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Eigen model as a quantum spin chain: Exact dynamics
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We map the Eigen model of biological evolution@Naturwissenschaften58, 465~1971!# into a quantum spin
model with non-Hermitian Hamiltonian. Based on such a connection, we derive exact relaxation periods for the
Eigen model to approach static energy landscape from various initial conditions. We also study a simple case
of dynamic fitness function.
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The Eigen model of asexual evolution@1,2# is one of the
main mathematical models in this field. In this model ind
viduals have offsprings that are subjected to mutation
connects with a selection rule. In his original work Eig
found an error threshold similar to the critical point in cri
cal phenomena such that when the mutation is larger than
error threshold the organism cannot survive. Later, statist
mechanics has been applied to investigate the discrete
version of the original model@3,4#. Franz and Peliti@5# de-
rived another important result in the Eigen model: conc
tration of individuals around the peak configuration.

In the parallel mutation-selection model, an alternative
the Eigen model, a mutation mechanism and a selec
mechanisms are two independent processes that take
concurrently@6#. Baakeet al. @7# proved that for the paralle
mutation-selection scheme, the time evolution equation
the frequencies of different species is equivalent to
Schrödinger equation in imaginary time for quantum spins
a transverse magnetic field. Based on such a connection
cently we used Suzuki-Trotter formalism@8# to study both
statics and dynamics of the model with a single peak fitn
function @9#. In the present paper, we will extend such stu
to the Eigen model@1# by reexpressing the Eigen model
dynamics via quantum chain problem, then solving the
namics to obtain exact relaxation periods for the Eig
model. The dynamic aspects play important role during
evolution in changing environments@10–12#. Thus such as-
pects in the Eigen model have been considered in re
works @13,14#, in which approximate formulas for the relax
ation periods have been found and applied to describ
virus-immune system coevolution. Our equations for ex
relaxation periods are consistent with approximate formu
in Refs.@13,14# for the case of one mutation per replicatio

As in Ref. @9#, the genome configuration is specified by
sequence ofN spin valuessk561, 1<k<N. We denote the
i th genome configuration bySi[(s1 ,s2 , . . . ,sN) and the
probability of the i th genome at timet is given by pSi

[pi(t) and the fitnessr i is the average number of offspring
per unit time. In our language, the chosen fitnessr i is a
function f that operates on the genome configurationSi , i.e.,
r i5 f (Si).
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In the Eigen model, elements of the mutation matrixQi j
represent the probability that an offspring produced by staj
changes to statei, and the evolution is given by the set of 2N

coupled equations for 2N probabilitiespi ,

dpi

dt
5(

j 51

2N

Qi j r j pj2piS (
j 51

2N

r j pj D . ~1!

Here pi satisfies( i 51
2N

pi51 and Qi j 5qN2d( i , j )(12q)d( i , j )

with d( i , j )[(N2( l 51
N si

lsj
l )/2 being the Hamming distanc

betweenSi and Sj . The parameter 12q describes the effi-
ciency of mutations. For the parallel mutation-selecti
model, the dynamics is given by

dpi

dt
5(

j 51

2N

mi j pj1pir i2piS (
j 51

2N

r j pj D , ~2!

wheremi j are the elements of the mutation matrixmi j 5g0
for d( i , j )51, mi j 52Ng0 for i 5 j , andmi j 50 for d( i , j )
.1.

Eigen found that it is enough to solve Eq.~1! for only
linear parts@1#. Let us decompose the first, linear part of E
~1! via mutations to the fixed lengthd( i , j )5 l :

dpi

dt
5(

l 50

N

(
j ,d( i , j )5 l

Qi j r j pj . ~3!

The second sum is over all configurations having Hamm
distancel from the peak configuration. Using the relatio

( i 51
2N

Qi , j51, we can show that whenpi satisfies Eq.~3!,
then

pi8~ t ![
pi~ t !

(
j

pj~ t !

~4!

satisfies Eq.~1!. We can compare Eq.~3! with Eq. ~2! with-
out the last nonlinear term. The termsl 51 andl 50 in Eq.
~3! correspond, respectively, to the first and second term
Eq. ~2!. In Eq. ~3!, there are terms with higher levell>2
spin flips. Baakeet al. @7# mapped Eq.~2! into a model of
quantum spin chain. Here we will use the same method
©2004 The American Physical Society13-1
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map the model of Eqs.~1! and~3! into a quantum spin mode
with additional higher level spin flip terms.

Let us reformulate the system of Eq.~3!. As we identify
configurationSj with a collection of spinss1

j ,•••,sN
j 561

and define fitness functionf asr j5 f (s1
j ,•••,sN

j )[ f (Sj ). Let
us consider vectors in the Hilbert space ofN quantum Pauli
spins. With thepi of Eq. ~3!, we connect a vector in Hilber

space( i 51
2N

pi uSi&. Then r j→ f (s1
z ,•••,sN

z ). The l spin flip
term Qi j in Eq. ~3! can be identified with a matrix elemen
^Sj uDl uSi& of quantum operator

Dl[qN2d( i , j )~12q!d( i , j ) (
1< i 1^••• i l<N

s i 1
x
•••s i l

x . ~5!

Thus Eq.~3! is equivalent to Scro¨dinger equation

2H5 f ~s1
z
•••sN

z !qN1qN

3(
l 51

N S 12q

q D l

(
(1< i 1, i 2••• i l<N)

2N

s i 1
x
•••s i l

x f ~s1
z
•••sN

z !,

d

dt (
j 51

2N

pj~ t !uSj&52H(
j 51

2N

pj~ t !uSj&, ~6!

and Eq.~4! to

Z5(
i j

^Si ue2HtuSj&pj
0 ,

pi5

(
j

^Si ue2HtuSj&pj
0

Z
, ~7!

wheres denotes the spin operator anduS& is the standard
notation for the spin state. One can multiply Eq.~6! from the
left by ^Si u and obtain Eq.~3!.

For the single-peaked fitness function, we take

f ~S1!5A,

and

f ~Si !51 for iÞ1, ~8!

with S1[(11,11, . . . ,11), which is equivalent to choos
ing

f ~S1!511~A21!F(
i 51

si

N
G p

~9!

at the limit p→`. A careful look at the Hamiltonian of Eq
~6! reveals that it is non-Hermitian. But we will mainly wor
with the matrix elements betweenSiÞS1 andSjÞS1 and for
these situations we can miss the multiplierf (s1

z
•••sN

z )
51. For that sector of Hilbert space Hamiltonian is Herm
ian. To investigate the dynamics, we are using the ma
elements of Hamiltonian
02191
-
ix

2^S1uHuS1&5Ae2g,

^Si uHuSj&5^Si uHdi f f uSj&, iÞ1,

2Hdi f f5 Î e2g1(
l 51

N

e2gS 12q

q D l

(
1< i 1, i 2••• i l<N

2N

s i 1
x
•••s i l

x ,

~10!

where Î is identity operator,g[2N ln(q)'N(12q)!N. For
us only termsl !N are relevant, therefore the substitutio
qN@(12q)/q# l→e2g(g/N) l can be applied.

To calculate matrix elements ofT(t)[e2Ht, one should
introduce the Suzuki-Trotter formalism@8#. To perform ana-
lytical calculation, it is more convenient to use Eq.~9! for the
fitness function then Eq.~10!. For any value ofp an exact
method of Suzuki-Trotter formalism@8# can map the system
to the problem in classical statistical mechanics. Moreov
for the large values ofp it is well known that the problem is
drastically simplified. For the quantump-spin interactions in
a transverse magnetic field, Goldschmidt@15# has found that
all the order parameters~magnetizations! are either 1 or 0
and one should take either only transverse interaction te
(s i 1

x
•••s i l

x ) or only the longitudinal one„e2g@11(A

21)(( is i
z/N)p#…. Therefore, we can work with system o

Eq. ~10! using the following trick. With exponential accurac
of order 1/2N, it is possible to neglect thes i

x terms in Eq.~6!
and get

^S1ue2HtuS1&;exp@~Ae2g!t#. ~11!

Matrix elementŝ Si ue2HtuSj& for iÞ1 can be replaced with
exponential accuracy bŷSi uexp@2Hdif ft#uSj&. Equation

d

dt (
i 51

2N

xi~ t !uSi&52Hdi f f(
i 52

2N

xi~ t !uSi& ~12!

is equivalent to Eq.~3! with r j51 for j 52, . . . ,2N and r 1
50. Then we derive that

(
i 52

2N

xi~ t !5exp~ t !(
i 52

2N

xi . ~13!

From Eqs. ~11! and ~13!, we havep1;exp@(Ae2g)t# and

( i 52
2N

pi;et. Therefore, we derive the Eigen’s exact formu
for the error threshold

A.eg. ~14!

Let us calculate now the transition probabilitie
^Sj uexp(2Hdif ft)uSi& between two states with the total numb
of M flips between configurationsSi[$s1

i , . . . ,sN
i % and Sj

[$s1
j , . . . ,sN

j % and definem5122M /N. We will show be-
low that the model can be solved at

1

N
;~12q!!1. ~15!
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For the finite (12m), we guess that the relaxation timet is
of orderN and define

T5te2g/N. ~16!

There areN(11m)/2 spins without flips~11 spins! and
N(12m)/2 flipped spins (21 spins!. Let us denote
by hl the term ofl spin flip in the Hamiltonian. To calculate
the matrix element̂ Sj uexp(2Hdif ft)uSi&[^Sjuexp(2t(lhl)uSi&,
let us use an equality exp(asi1

x si2
x
•••sil

x#5cosh(a)@1

1tanh@a#si1
x si2

x
•••sil

x# and expand the product keeping term

till the M th degree

^Sj ue2tHdi f f uSi&' (
K51

M

(
l 11••• l K5M

M !

l 1! l 2! •••.
cosh~gT!N

3tanh~gT! l 1)
i .1

F ~Tg i !^1us1
xu2&

Ni 21i !
G l i

.

~17!

We find via the saddle point the principal term in the expr
sion of Eq.~17! among all distributions with differentl i . We
keep cosh,tanh only for the one spin flip terms. We calcu
also the combinatorics of insertion intoM site box combina-
tion of l 1 single points,l 2 duplets, . . .l k k plets, which sat-
isfy the constraint

(
i 51

M

il i5M . ~18!

We can take the constraint of Eq.~18! into account via a
Lagrange parameterl and writel i asxiN. For the logarithm
of a typical term for summation in Eq.~17!, we have

Nf~T,m,g![NH ln cosh~gT!1x1ln@ tanh~gT!#1
12m

2

3 ln
12m

2
2

12m

2
2(

i 52
@xi ln~xi i !/T!2xi #

1 ln g(
i 52

M

ixi2x1ln x11x1

1lS (
i

ix i2
12m

2 D G . ~19!

The extremum conditions forxi of Eq. ~19! give

x15tanh~gT!z/g, i !xi5Tzi , i>2, ~20!

where z[gel. Using formulas: ( i 52
M xi5T( i 52zi / i !

5T(exp(z)2z21), ( i 52
M izi / i ! 5( i 51

M izi / i ! 2z5z exp(z)z
2z, ( i 52

M xi ln(xii!/T)5T ln z(i52iz
i/i!5Tzln z@exp(z)21#, and

Eq. ~18!, we have:

zTez2Tz1z tanh~gT!/g5
12m

2
,

02191
-

te

f~T,m,g!5
12m

2
ln

~12m!g

2
2

12m

2
1 ln cosh~gT!

1z tanh~gT!@12 ln z#/g1T@ez~12z ln z!

2z~12 ln z!21#. ~21!

Let us now consider an ansatz for^S1ue2HtuSi&:

^S1uexp@AN~T2T0!#uS1&^S1ue2Hdi f f t0uSi&

5exp$N@A~T2T0!1f~T0 ,m,g!#%. ~22!

While calculating this expression via saddle point, we fi
find the extremal pointT0[e2gt0 /N from the saddle point
condition

A5
df~T0!

dT
. ~23!

The transition periodt1[NegT1 is defined from the condi-
tion that the contribution̂ S1ue2HtuSi& into Z of Eq. ~7! is
larger than the contributions of other terms^Sj ue2HtuSi&
@equal toet according to Eq.~13!#:

exp„N@f~T0 ,m,g!1A~T12T0!#…>exp~NegT1!,

T15
A

A2eg
T02

f~T0 ,m,g!

A2eg
. ~24!

Thus Eqs.~21!, ~23!, and~24! give the relaxation periodT1
[e2gt1 /N under the constraint of Eq.~14! for the fitnessA.

There are several phases in dynamics. For 0,t,t0, there
is a random drift to the peak configurationS1. For t0,t
,t1, there is a growth in the value ofp1, but the macro-
scopic majority is still out of the peak configuration. Fort
.t1, the macroscopic majority is near the peak configu
tion.

Let us give an explicit expressions for the case

g~12m!

A
!1. ~25!

This is a typical biological situation for observing 12m
!1. In this case, as we can check later,T;(12m)!1, thus
one can replacez tanh(gT)/g→zT and derive a simplified
system of equations:

f~T,m,g!5
12m

2 F ln g
12m

2
2~11 ln z!G1T~ez21!,

Tzez5
12m

2
,

df

dT
5ez215A. ~26!

Then T05(12m)/@2(11A)ln(11A)#. Thus for the relax-
ation periodt5T1egN, one has an expression
3-3
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t15~12m!N

ln
2e ln~A11!

~12m!g

2~Ae2g21!
. ~27!

Equation~27! gives relaxation period from the original dis
tribution, concentrated at the configuration with the over
Nm with the peak fitness configuration, and mutation per s
12q5g/N. The physical meaning of the term (12m)N/2 is
trivial ~for the case of infinite population!: the relaxation
period is proportional to the Hamming distance. We can
derstand also the term (Ae2g21) in the dominator: it is a
natural consequence of the fact that relaxation period sh
diverge at the error thresholdAe2g→1. Our derivation is
valid when the condition of Eq.~25! is satisfied. An estimate
for t1 has been given in Refs.@13,14#.

t15

ln
1

12q

Ae2N(12q)21
[

ln
N

g

Ae2g21
. ~28!

We note that Eq.~28! is qualitatively correct and consisten
with Eq. ~27! for the caseN(12m)/251 considered in those
works. Our derivation is rigorous only for a large number
flipped spins, i.e.N(12m)/2@1. For a small number o
flipped spins considered in Refs.@13,14#, we still cannot de-
rive an exact analytical formula.

Let us briefly consider a simple case of a dynamic fitn
landscape: a fitness peakA(t) in the first configurationS1,
which changes with the time. Now for the^S1ue2HtuS1&, we
have exp@e2g*0

t A(t)dt#. Equations~23! and ~24! transform
into

A~t0!5
df~T0!

dT0
, f~T0 ,m,g!1E

T0

T1
A~t!dt.egT1 .

~29!

Now this could be a very rich phase structure with differe
solutions forT0. For T1[t1e2g/N, we have

Â5

E
T0

T1
A~t!dt

T12T0
, T15

Â

Â2eg
T02

f~T0 ,m,g!

Â2eg
. ~30!

Now A is replaced with a mean value. For the case ofA

@g(12m), we again have Eq.~27!, only with A→Â.
For A@1, we can calculate the relaxation time from

original uniform distribution on a static landscape:pi
51/2N. For this purpose, we compare the contributi
02191
p
e

-

ld

f

s

t

^S1ue2HtuS1&522Nexp@Ae2gt# with exp(t) ~sum of other
contributions! for their contributions toZ of Eq. ~7! and find
that

t15
N ln 2

Ae2g21
. ~31!

To derive the steady state distributions ofpi , we can set
dpi /dt50 in Eq. ~1!. For A@1 we can derive thatpi
5qN@(12q)/q#d(1,i ) and the result obtained in Ref.@5#:
(1/N)( i pi( l 51

N si
l52q21.

Let us briefly consider the case of two isolated flat pea
in fitness landscape with fitness heightsA1 and A2, and
widths g1 and g2. The peak of heightAi has gi one-flip
neighbors of the same height. A simple consideration gi
for the effective fitnessAi@11gi(12q)#. Thus the Svetina-
Scuster phenomenon@16# for two peaks appears atA1@1
1g1(12q)#5A2@11(12q)g2#.

In 1971, Eigen@1# found an exact error threshold for h
model from information theory arguments. After more th
30 years of different approximate or numerical investigatio
of the Eigen model, we have found the exact dynamics of
model presented in Eqs.~21!, ~23!, and ~24!. Our Eq. ~27!
gives the relaxation periods with a high degree of accur
O(12m)2;(d/N)2, it is more accurate than Eq.~28! de-
rived in @13,14#. In @9# we compared the accurate result
this work Eq.~27! with the corresponding relaxation perio
of parallel scheme to conclude that even at the limit of va
ishing mutation rates two mutation schemes give a fin
~nonvanishing! difference in relaxation periods. Therefor
there is at least one situation in which our exact Eq.~24! or
accurate approximation, Eq.~27!, gives a new qualitative
result. We have also applied the similar method to stud
simple case of dynamical environments and obtained E
~29! and~30!. The more involved situations with a very ric
and interesting phase structure@12# as well as the virus-
immune system coevolution@14# can also be investigated b
our method. The main open problem is an application of
same method to the finite population case. In this case
search of a peak configuration could be an exponenti
large function ofN, instead of a linear in Eq.~27!. We hope
that progress in this direction is possible in the near futu
considering funnel-like fitness landscapes. In any case in
work we considered the Eigen model’s dynamics as a sta
tical mechanics problem and exactly solved it.
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